
Advanced Computer Programming
[Lecture 15]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1



Relational Databases

If you have a lot of data, it can be difficult to add, remove, find,
and update operations quickly and efficiently in files.
Database management systems let the programmer think in
terms of the data rather than how it is stored.
In this chapter, you will learn how to use SQL, the Structured
Query Language, to query and update information in a relational
database, and how to access database information from Java
programs. 2



Database tables

A relational database stores information in tables.

Note that all items in a particular column have the same type.

The Product table shows types that are commonly available in
relational databases that follow the SQL (Structured Query
Language)

There is no relationship between SQL and Java, they are different
languages.

However, you can use Java to send SQL commands to a
database.

3



SQL: Create a table
Creat a table command:

SQL datatypes and the corresponding datatype in JAVA:

4



SQL: Manipulate a table

Unlike JAVA, SQL is not case sensitive.

For example, you could spell the command create table
instead of CREATE TABLE.

To insert rows into the table, use the INSERT INTO command.
INSERT INTO Product
VALUES (’257-535’, ’Hair dryer’, 29.95)

SQL uses single quotes (’), not double quotes, to delimit strings.

Rather than using an escape sequence (such as \’) as in Java,
you just write the single quote twice, such as
’Sam’’s Small Appliances’

If you create a table and subsequently want to remove it, use the
DROP TABLE command.
DROP TABLE Test

5



Linking tables

If you have objects whose instance variables are strings,
numbers, dates, or other types that are permissible as table
column types, then you can easily store them as rows in a
database table.

6



Linking tables
For other objects (data types), it is not so easy to be stored.

Because Customer isn?t a standard SQL type, you might
consider simply entering all the customer data into the invoice
table:

7



Linking tables

However, this is not a good idea.

For instance If you look at the sample data in Invoice table, you
will notice that Sam’s Small Appliances had two invoices,
numbers 11731 and 11733.

Yet all information for the customer was replicated in two rows.

If the same customer places many orders, then the replicated
information can take up a lot of space.

More importantly, the replication is dangerous. Suppose the
customer moves to a new address. Then it would be an easy
mistake to update the customer information in some of the invoice
records and leave the old address in place in others.

8



Linking tables
The solution is to organize your data into multiple tables.

But how can we refer to the customer to which an invoice is
issued?
Notice that there is now a Customer Number column in both the
Customer table and the Invoice table.
The two tables are linked by the Customer Number field.

9



Linking tables

Note that the customer number is a unique identifier.

In database terminology, a column (or combination of columns)
that uniquely identifies a row in a table is called a primary key.

For example, In our Customer table, the Customer Number
column is a primary key.

You need a primary key if you want to establish a link from
another table. When a primary key is linked to another table, the
matching column (or combination of columns) in that table is
called a foreign key.

For example, the Customer Number in the Invoice table is a
foreign key.

10



Multi-Valued relationships

11



Multi-Valued relationships

11



Multi-Valued relationships

12



Multi-Valued relationships

13



Queries

Once a database is filled with data, you will want to query the
database for information, such as

What are the names and addresses of all customers?

What are the names and addresses of all customers in
California?

What are the names and addresses of all customers who bought
toasters?

What are the names and addresses of all customers with unpaid
invoices?

14



Simple Queries

In SQL, you use the SELECT command to issue queries:
SELECT * FROM Customer

and the result is:

Selecting columns:
SELECT City, State FROM Customer

15



Simple Queries

Selecting subsets:
SELECT * FROM Customer WHERE State = ’CA’

and the result is:

To test for inequality, you use the <> operator:
SELECT * FROM Customer WHERE State <> ’CA’

You can match patterns with the LIKE operator. The right-hand
side must be a string that can contain the special symbols
(match exactly one character) and % (match any character
sequence):
Name LIKE ’ o%’

matches all strings whose second character is an “o”.

16



Simple Queries
You can combine expressions with the logical connectives AND,
OR, and NOT.
SELECT *
FROM Product
WHERE Price < 100
AND Description <> ’Toaster’

and the result is:

Suppose you want to find out how many customers there are in
California.
SELECT COUNT(*) FROM Customer WHERE State = ’CA’

In addition to the COUNT function, there are four other functions:
SUM, AVG (average), MAX, and MIN.
SELECT AVG(Price) FROM Product

17



Simple Queries

Queries we have seen so far all involve a single table. However,
the information we want is usually distributed over multiple tables.

For instance, we can use a query to find the product code:
SELECT Product Code
FROM Product
WHERE Description = ’Car vacuum’

Then we can issue a second query:
SELECT Invoice Number
FROM LineItem
WHERE Product Code = ’643-119’

But it makes sense to combine these two queries .

18



Simple Queries

Thus, the combined query is
SELECT LineItem.Invoice Number
FROM Product, LineItem
WHERE Product.Description = ’Car vacuum’
AND Product.Product Code = LineItem.Product Code

The result is:

Such a query is often called a join because it involves joining
multiple tables.

19



Simple Queries

Whenever you formulate a query that involves multiple tables,
remember to:

List all tables that are involved in the query in the FROM clause.

Use the TableName.ColumnName syntax to refer to column
names.

List all join conditions (TableName1.ColumnName1 =
TableName2.ColumnName2) in the WHERE clause.

20



Simple Queries
Whenever you formulate a query that involves multiple tables,
remember to:

The outcome of a SELECT query is a result set that you can view
and analyze.

Two related statement types, UPDATE and DELETE, don’t produce
a result set. Instead, they modify the database.

For instance, to delete all customers in California:
DELETE FROM Customer WHERE State = ’CA’

The UPDATE query allows you to update columns of all records
that fulfill a certain condition:
UPDATE LineItem
SET Quantity = Quantity + 1
WHERE Invoice Number = ’11731’

You can update multiple column values by specifying multiple
update expressions in the SET clause, separated by commas.

21



Installing a Database

A wide variety of database systems are available. Among them are

Production-quality databases, such as Oracle, IBM DB2,
Microsoft SQL Server, PostgreSQL, or MySQL

Lightweight Java databases, such as Apache Derby, it is included
with the Java Development Kit.

Desktop databases, such as Microsoft Access.

JDBC architecture:

22



Database programming in Java

To connect to a database, you need an object of the Connection
class.

Next, you ask the DriverManager for a connection.
String url = . . .;

String username = . . .;

String password = . . .;

Connection conn = DriverManager.getConnection(url,

username, password);

When you are done issuing your database commands, close the
database connection:
conn.close();

23



Executing SQL statements

Once you have a connection, you can use it to create Statement
objects.
Statement stat = conn.createStatement();

The execute method of the Statement class executes a SQL
statement.
stat.execute("CREATE TABLE Test (Name CHAR(20))");
stat.execute("INSERT INTO Test VALUES (’Romeo’)");

To issue a query, use the executeQuery method of the
Statement class. The query result is returned as a ResultSet
object.
String query = "SELECT * FROM Test";
ResultSet result = stat.executeQuery(query);

24



Executing SQL statements

For UPDATE statements, you can use the executeUpdate
method.
String command = "UPDATE LineItem"
+ " SET Quantity = Quantity + 1"
+ " WHERE Invoice Number = ’11731’";
int count = stat.executeUpdate(command);

If your statement has variable parts, then you should use a
PreparedStatement instead:
String query = "SELECT * WHERE Account Num = ?";

PreparedStatement stat = conn.prepareStatement(query);

The ? symbols in the query string denote variables that you fill in
when you make an actual query:
stat.setString(1, accountNumber);

25



Analyzing Query Results

The ResultSet class has a next method to visit the next row.

The next method does not return any data; it returns a boolean
value that indicates whether more data are available.

If the result set is completely empty, then the first call to
result.next() returns false.

Otherwise, the first call to result.next() fetches the data for
the first row from the database.

Once the result set object has fetched a particular row, you can
inspect its columns:
String productCode = result.getString("Product Code");

int quantity = result.getInt("Quantity");

double unitPrice = result.getDouble("Price");

26



Result Set Metadata

When you have a result set from an unknown table, you may want
to know the names of the columns.

You can use the ResultSetMetaData class to find out about
properties of a result set:
ResultSetMetaData metaData = result.getMetaData();

Accessing column labels:
for (int i = 1; i <= metaData.getColumnCount(); i++)

{
String columnName = metaData.getColumnLabel(i);

int columnSize = metaData.getColumnDisplaySize(i);

...

}

27


